Difference between revisions of "Chapter Four: Water Demand Assessment"

From Ministry of Water DCOM Manual
Line 214: Line 214:
 
| Small scale (dry)  || 5
 
| Small scale (dry)  || 5
 
|}
 
|}
 +
(Source: MoW, 3rd Design Manual 2009)
 +
 +
If the requirement of a particular industry are large compared to the existing or planned water supply system, then it will be necessary to establish the total demand and to consider to identify a separate local water source that must be examined whilst part of the requirement can be supplemented from the town or city water supply system.
 +
 +
Establish the industrial water requirement by summation of individual industry consumer category product volume multiplied by respective per capita consumption
 +
 +
 +
'''Step 4: Establish Water Requirements for Energy Cooling Systems'''
 +
 +
For any water project planned in areas with high potential for thermoelectric investments, water intended for energy cooling system should be separated from the industrial demand (Kohli and Frenken, 2011). This is due to the fact that such plants require huge amounts of water, which in some occasions may be beyond the capacity of the water supply system. Table 4.6: provides guidance on water requirements for energy cooling systems.
 +
 +
Table 4.6: Approximate withdrawals and consumptions, not accounting for ambient temperature or plant efficiency.
 +
{| class="wikitable"
 +
|-
 +
! Plant and cooling system Type Water  !! Withdrawal (litres/MWh)  !! Consumption (litres/MWh)
 +
|-
 +
| Fossil fuel/biomass/waste | once-through cooling  || 76 000 – 190 000 || 1 000
 +
|-
 +
| Fossil fuel/biomass/waste | closed-loop cooling  || 2 000 – 2 300 || 2 000
 +
|-
 +
| Nuclear steam | once-through cooling  || 95 000 – 230 000 || 1 500
 +
|-
 +
| Nuclear steam | closed-loop cooling  || 3 000 – 4 000 || 3 000
 +
|}
 +
(Source: Adapted from FAO AQUASTAT Report, 2011)
 +
 +
Establish the plant water requirement by summation of individual plant cooling consumer category water withdrawal multiplied by respective per capital consumption
 +
 +
'''Step5: Establish Commercial Water consumption'''
 +
 +
Commercial water consumption is sometime considered under institutional or industrial demands. The augmentation of such demands can cause technical errors in the process of design and projection of water demand. Commercial water consumption occurs in hotels, restaurants, bars, shops, small workshops, car wash, service stations, etc. The present water demand should be known by their metered water consumption, and at least, the bigger hotels, restaurants and services stations must be checked. Future water requirements can be based on the estimated development of this sector. Table 4.7: gives water consumption figures for hotels and restaurants.
 +
 +
If there is a reservation in the town plan for the future business area without any specification, the estimates must be based on per hectare demand. As a guide, a water demand of 10 - 15 m3/ha/d for a non-specified commercial area in a new town plan can be adopted.

Revision as of 20:25, 5 May 2020

1 Chapter Four: Water Demand Assessment

1.1 1.1 Water Demand Assessment

Water demand is the quantity of water that the source must produce to meet all project water requirements. These include water delivered to the system to meet the needs of consumers, water supply for firefighting, system flushing, water required for operation of treatment facilities and amount water lost due to leakages in the infrastructure. In planning and designing of any project, water demand assessments of current and future needs are of prime importance. Engineering decisions are required to determine the area and the population, industries, institutions and other consumers to be served, design period, the per capita consumption of various categories of consumers’ pressure zones, amount of water likely not to be charged (NRW) and other needs of water in the area.

In addition, demand assessment may assist in determining the nature and location of various facilities to be provided such as source of water and capacity of water storage facilities (FAO AQUASTAT, 2011 and MoW Design Manual, 2009). For effective determination of water demand, designers need to critically assess the components of water demand for the planned water supply system. The following are the main components that should be considered when conducting water project demand assessment:

  • Water demand for domestic use
  • Institutional Water Demands
  • Industrial Water Demands
  • Water Requirements for Energy Cooling Systems
  • Commercial Water Demand
  • Livestock Water Demand
  • Water for Fire Fighting
  • Operational Demands
  • System water losses
  • Non-Revenue Water
  • Net Water Demand (revenue water)

1.2 1.2 General Factors Affecting Water Demand Assessment

Demand assessment is the most critical element in project planning either for short, medium or long-term water projects (Water Mission Technical Handbook of 2019 and MoW Design Manual of 2009), The complexity of water demand assessment to meet various socio-economic needs in the community may be brought about by many factors influencing individual water consumption patterns which include:

  • Religion,
  • Social economic status -cooking and health practices,
  • Climatic conditions,
  • Cultural, habits of community,
  • Age and education,
  • Availability of alternative water sources,
  • Level of service, technological process,

The combination of these factors may attribute to over or under estimation of the water demand in the given project area. Over-estimation of demand may justify a project that should not have been built. This then leads to unnecessary costs, over-estimation of intended revenue and premature implementation of a project. It is recommended that thorough community survey be conducted to the project area to determine the magnitude of factors affecting water consumption pattern described above.

The fundamental components of calculating water demand are by determining the total population and the average daily consumption of the individuals.

Apart from individual based water consumption pattern, the institutions surrounding the community to be served have greater influence on the determination of the overall water demand in the project area. In view of this, designers of the water supply project must take into consideration the different water consumption patterns of institutions when calculating the total water demand in the project area. For each particular type of institution, specific requirements should be obtained from the institutions concerned.

Water requirements for each institution must be computed separately and aggregated into the overall water demand assessment. In the rural areas, allowance should also be given for connection to schools, dispensaries, health centres, offices etc. Losses should always be determined from the gross total water requirements and not from the net. For the best conceptualization of water demand, water requirement of each sector or sub-sector must first be computed separately and later aggregated with other computed segment demands to obtain the overall project water demand. The formula below provides general consumers whose water demand may be required:

Total water demand = Domestic + Institutional +Industrial +Commercial +Livestock + Fire fighting + other uses (Operational demand) + NRW (4.1)

It is worth to note that, the above formula is just a guide and should be adjusted according to the area in question. Additionally, in whatever assessments, demand assessment should aim at obtaining the design and operational information to optimize the net benefits to the community.

1.3 1.3 Determination of Water Demand for Different Uses

The foregoing section presented the components of water demand in a project. However, before establishing the project water demand, there is need to establish the water consumption of each consumer either individually or as an institution. Water consumption is the quantity of water that is directly utilized by the consumer. Water consumption is initially split into domestic and non-domestic components, non-domestic use include Commercial Use, Institutional Use and Industrial Use, Fire Fighting and System Water Consumption.

To establish project water demand, it is important to determine the prevailing water project consumption categories and their water requirements. The following steps detail a procedure to be followed when determining the project water demand;

Step 1: Establish Domestic water consumption
Step 2: Establish Institutional Water Consumption
Step 3: Establish Industrial Water consumption
Step 4: Establish Water Requirements for Energy Cooling Systems (if exist)
Step 5: Establish Commercial Water consumption
Step 6: Establish Livestock Water consumption
Step 7: Establish Net Water Demand
Step 8: Establish Fire Fighting Water consumption
Step 9: Establish Operational water consumption
Step 10: Establish System water losses
Step 11: Establish Non-Revenue Water
Step 12: Establish Water Demand

Step 1: Establish Domestic water consumption

Domestic water consumption is water utilised for household chores, such as bathing, cooking, washing, drinking, laundry, dishwashing, gardening, car washing and other less water intensive or less frequent purposes. Individual water use in rural, peri-urban or urban setting tends to differ considerably depending on levels of service.

Levels of Service for domestic consumers;

The amount of water consumed depends on the level of service provided, the following are five categories of level of service to domestic water use categories;

Category one: Low income using public tap or kiosks,
Category two: Low income multiple house with yard tap, multiple houses served from single yard tap,
Category three: Low income single house hold with yard tap,
Category four: Medium Income Household, Medium income group housing, with sewer or septic tank.
High Income Household: High income group housing, with sewer or septic tank

Water use is at its lowest when water is distributed through water points (category one level of service-public taps or kiosks) with some walking distance from the home. When water is brought into the house by piping (regardless of whether the location is rural or urban), the consumption increases considerably. It is necessary to also note that there is no incentive for the consumer to utilize less water when water is supplied at a flat monthly rate. With waterborne sanitation and high standard of in-house installations (category five-bath, washing machine etc) the per capital consumption may be ten times more than from a public tap.

Considerations when estimating domestic water consumption:

The proposed figures for water consumption rates as given in Table 4.1 are a guide for designers however to make an accurate estimate of the water requirements it is necessary to considering the following;

  • Decide upon use of different per capital consumption rate if water requirement survey data from the project area justify,
  • Dividing the population to be served into consumption groups as per levels of service obtained through social economic survey data of the project area (combination of percentage of the population to be served from each service category).
  • Use of population density of residential plots if the data is available,
  • Adjusting the community water requirement if survey of alternative sources of water are available.

Table 4.1: Water Requirements for various categorized domestic users

CONSUMER CATEGORY CONSUMPTION (l/ca/d) REMARKS
FR M-UT M- PBT
Low income using kiosks or public taps 20 20 20 Squatter areas, to be taken as the minimum.
Low income multiple household with Yard Tap 50 45 40 Low income group housing with pit latrine but no inside installation
Low income, single household with Yard Tap 70 60 50 Low income group housing with pit latrine but No inside installation.
Medium Income Household 130 110 90 Medium income group housing, with sewer or septic tank.
High Income Household 250 200 150 High income group housing, with sewer or septic tank.
FR = Flat Rate; M-UT = Metered with Uniform Tariff; M-PBT = Metered with Progressive Block Tariff.

(Source: Modified from MoW 3rd Edition Design Manual 2009)

Establish the domestic water requirement by summation of individual domestic consumer category population multiplied by respective per capital consumption.

Step 2: Establish Institutional Water Consumption

When designing and planning for a water project, water requirements for present and anticipated institutions in the project area have to be computed using institutional water requirement data obtained in community survey. Public and private institutions include: Schools, Hospitals, Administration Offices, Police, Missions, Churches and Mosques, Prisons, etc. In Table 4.2, some guiding figures for institutional water unit consumption are given. The water requirements for staff working in the institutions consumption (See section 4.3.1). If large demand units are included in the scheme, such as Universities, major hospitals, boarding schools etc., a special study of their water requirements is recommended instead of using the average figures given in the Table 4. 2:

Table 4.2: Institutional Water Demands

CONSUMER UNIT Consumption litre/person/day REMARK
Schools − Day Schools 1/std/d 10 ,25 With pit latrine

With WC

− Boarding Schools 1/std/d 70 With WC
Universities and colleges l/std/d 60-80 With WC
Health care Dispensaries 1/visitor/d 10 Out patients only
Health 1/bed/d 50 No modern facilities
Health 1/bed/d 100 With WC and sewer
Hospitals, District 1/bed/d 200 With WC and sewer
Hospitals, Regional 1/bed/d 400 With surgery unit
Administrative Offices 1/worker 70 With pit latrines With WC
Prison 1/Prisoner/day 10-15 Depending on climate and activities in prison

(Source: Modified from MoW 3rd Edition Design Manual 2009)

Additionally, water supply requirements for railway stations, bus stations, bus terminals, sea ports airports include provisions, for waiting rooms and waiting halls have to be considered separately in the planning and design of a water supply scheme. Table 4.3 provides general guidance for water requirements considerations in stations and ports. The number of persons should be determined by average number of passengers handled by the station daily and seasonal average peak requirements should be taken into consideration during design

Table 4.3: Water requirements for ports and stations

Nature of Station Station categorization Where bathing facilities are providedlitres /capita Where bathing facilities are not provided

litres/capita

Railways, bus stations and sea ports Intermediate stations (excluding mail and express stops ) 45 25
Junction stations and intermediate stations where mail or express stoppage is provided 70 45
Terminal stations 45 45
Airports International and domestic airports 70 70

(Source: National Building Code of India, 2016)

Establish the institutional water requirement by summation of individual institutional consumer category population multiplied by respective per capital consumption.

Step 3: Establish Industrial Water consumption The water consumption in the industry varies considerably depending on the kind and size of the-industry. There are dry industries, which consume virtually no water in their processes, and the only water consumption is that for staff and cleaning of the premises. On the other hand, the water requirements for wet industries such as for a paper or cotton-processing factory can be a great deal. Table 4.4: gives unit water consumption in different kinds of industry. For the existing industry, the water consumption can be found out by checking their metered consumption or if there are-no records available by estimating according to the kind and size of production. The consumption figures for larger units must always be based on proper measurements and not on estimates.

Table 4.4: Specific industrial water requirements

Header text Header text Header text
Example Example Example
Example Example Example
Example Example Example
Example Example Example
Example Example Example
Example Example Example
Example Example Example
Example Example Example
Example Example Example
Example Example Example
Example Example Example
Example Example Example
Example Example Example
Example Example Example

(Source: Modified from MoW3rd Edition Design Manual 2009)

Future projections of industrial water requirements have to be established by direct interviews of the technical management of existing industries based on their production flow sheets and by contacts with the local planning officers and local Government officials, e.g. municipal or council officers. For future industries to be established, Ministry of Industry and Trade, the Regional Planning Officer or organizations such as the National Development Corporation (NDC), Small Industries Development Organization (SIDO) and owners of the private industries should be consulted. Where there is only a reservation for an industrial area in the town/city plan but without any specifications; estimates of the future water requirements can be based on the figures given in Table 4.5

Table 4.5 Industrial Water Demand (m3/ha/d) for future industries

Industry type Water demand m3 /ha/d
Medium Scale (water intensive) 50
Medium scale (medium water intensive) 20
Small scale (dry) 5

(Source: MoW, 3rd Design Manual 2009)

If the requirement of a particular industry are large compared to the existing or planned water supply system, then it will be necessary to establish the total demand and to consider to identify a separate local water source that must be examined whilst part of the requirement can be supplemented from the town or city water supply system.

Establish the industrial water requirement by summation of individual industry consumer category product volume multiplied by respective per capita consumption


Step 4: Establish Water Requirements for Energy Cooling Systems

For any water project planned in areas with high potential for thermoelectric investments, water intended for energy cooling system should be separated from the industrial demand (Kohli and Frenken, 2011). This is due to the fact that such plants require huge amounts of water, which in some occasions may be beyond the capacity of the water supply system. Table 4.6: provides guidance on water requirements for energy cooling systems.

Table 4.6: Approximate withdrawals and consumptions, not accounting for ambient temperature or plant efficiency.

Plant and cooling system Type Water Withdrawal (litres/MWh) Consumption (litres/MWh)
once-through cooling 76 000 – 190 000 1 000
closed-loop cooling 2 000 – 2 300 2 000
once-through cooling 95 000 – 230 000 1 500
closed-loop cooling 3 000 – 4 000 3 000

(Source: Adapted from FAO AQUASTAT Report, 2011)

Establish the plant water requirement by summation of individual plant cooling consumer category water withdrawal multiplied by respective per capital consumption

Step5: Establish Commercial Water consumption

Commercial water consumption is sometime considered under institutional or industrial demands. The augmentation of such demands can cause technical errors in the process of design and projection of water demand. Commercial water consumption occurs in hotels, restaurants, bars, shops, small workshops, car wash, service stations, etc. The present water demand should be known by their metered water consumption, and at least, the bigger hotels, restaurants and services stations must be checked. Future water requirements can be based on the estimated development of this sector. Table 4.7: gives water consumption figures for hotels and restaurants.

If there is a reservation in the town plan for the future business area without any specification, the estimates must be based on per hectare demand. As a guide, a water demand of 10 - 15 m3/ha/d for a non-specified commercial area in a new town plan can be adopted.